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ABSTRACT

We introduce a new subgroup embedding property of a finite group

called CAS-subgroup. Using this subgroup property, we determine the

structure of finite groups with some CAS-subgroups of Sylow subgroups.

Our results unify and generalize some recent theorems on solvability, p-

nilpotency and supersolvability of finite groups.
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1. Introduction

In 1962, Gaschütz [4] introduced a certain conjugacy class of subgroups of

a finite solvable group G with the cover-avoidance property. These subgroups

have the property that they avoid the complemented chief factors of G and

cover the rest. Thereafter, many authors, Gillam [5] and Tomkinson [10], for

example, devoted themselves to find some kind of subgroups of a finite solvable

group having this cover-avoidance property. In 1993, Ezquerro [3] considered

the converse questions, he gave some characterizations for a finite group G to

be p-supersolvable and supersolvable based on the assumption that all maximal

subgroups of some Sylow subgroup of G are CAP -subgroups. Asaad in 1998

obtained further results in the formation universe [2]. In recent years, it is of

interest to use some supplementation properties of subgroups to determine the

structure of the given group. For example, Wang introduced the c-normality

of a finite group in 1996 which is a kind of supplementation property [11]. By

using the c-normality of some maximal and minimal subgroups, he gave some

new criteria for the solvability and the supersolvability of finite groups. As

a generalization of c-normality and complementation, Wang introduced the c-

supplementation of a finite group in 2000 by replacing the normal supplement

with the more general supplement [12]. As applications, Wang presented some

conditions for a finite group to be solvable, p-nilpotent and supersolvable under

the condition that some subgroups of Sylow subgroup are c-supplemented. By

limiting the Sylow subgroups to the Fitting subgroup of some solvable group,

Wang, Wei and Li extended the results further to saturated formations [13].

Ramadan, Mohamed, Heliel [9] received some good results by assuming that

some subgroups of prime power order are c-normal.

In Section 2, we will show that it is easy to find groups with CAP -subgroups

which are not c-supplemented subgroups. Conversely, there are also groups

with c-supplemented subgroups which are not CAP -subgroups. Two examples

in Section 2 show that there is no obvious general relationship between these

two notions. Hence a natural question to ask is:

Whether the two concepts and the related results can be unified and generalized?

The purpose of this paper is to present an answer to the above question. In

detail, we introduce a new subgroup embedding property of a finite group called

CAS-subgroup which is a generalization of the cover-avoidance property and the

c-supplementation property. By using this subgroup property, we determine the

structure of finite groups with some CAS-subgroups of Sylow subgroups. Our

results unify and generalize the related results mentioned above on solvability,
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p-nilpotency and supersolvability of finite groups.

2. Preliminaries and basic properties

All groups considered will be finite. For a group G, we denote by π(G) the

set of prime divisors of |G|.

Let G be a group, H a subgroup of G and A/B be a G-chief factor. We say

that (i) H covers A/B if HA = HB; (ii) H avoids A/B if H ∩ A = H ∩ B. H

is called a CAP -subgroup of G if H either covers or avoids any G-chief factor.

We mention that H is c-supplemented (c-normal) in G if there exists a (normal)

subgroup K of G such that G = HK and H ∩ K ≤ HG = CoreG(H) ([11] and

[12]). In this case, if we let K1 = HGK, then G = HK1 with H ∩ K1 = HG;

H ∩ K1 is, of course, a CAP -subgroup of G. Based on the observation, we

introduce the following:

Definition 2.1: Let H be a subgroup of a group G. H is said to be a CAS-

subgroup of G if there exists a subgroup K of G such that G = HK and H ∩K

is a CAP -subgroup of G. In this case, K is called a CAS-supplement of H in G.

Remark 2.2: Clearly a CAP -subgroup or c-supplemented subgroup must be a

CAS-subgroup. But the converse is not true in general.

Example 1: Let G = A5 be the alternating group of degree five. Then G = AB

with A ∼= A4 and B ∼= C5. We see that both A and B are complemented and

so c-supplemented in G but neither of them is a CAP -subgroup of G.

Example 2: We may also find a solvable example which is CAS but is not

CAP in G. Let A4 be the alternative group of degree 4 and D = 〈d〉 be a cyclic

group of order 2. Let G = D ×A4. Then A4 = [K4]C3 where K4 = 〈a, b〉 is the

Klein Four Group with generators a and b of order 2 and C3 is the cyclic group

of order 3. Take H = 〈ad〉 to be the cyclic subgroup of order 2 of G. Then

G = HA4 and H ∩ A4 = 1. By definition, H is CAS in G. However, H is not

a CAP -subgroup of G as it neither covers nor avoids (D × K4)/D.

Example 3: Let A be a cyclic group of order 5 and let B be the full automor-

phism group of A of order 4. Let G = [A]B. Then the maximal subgroup of B

is a CAP -subgroup of G. However it is not c-supplemented in G. In fact, let

B = 〈α〉 with |α| = 4. Since B = 〈α2〉 is not normal in G (otherwise α2 = 1), we

have that 〈α2〉G = 1. If 〈α2〉 is c-supplemented in G, then it is complemented

in B, which is contrary to 〈α2〉 being the only maximal subgroup of B.
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Let G be the direct product of the groups in Example 1 and Example 3.

We know that a CAS-subgroup is not necessarily a CAP -subgroup nor c-sup-

plemented.

Lemma 2.3: Let H be a subgroup of a group G. Then

(1) let N ⊳ G and N ≤ H . If H is a CAS-subgroup of G, then H/N is a

CAS-subgroup of G/N ;

(2) let π be a set of primes, H a π-subgroup and N a normal π′-subgroup

of G. If H is a CAS-subgroup of G, then HN/N is a CAS-subgroup of

G/N ;

(3) let L ≤ G and H ≤ Φ(L). If H is a CAS-subgroup of G, then H is a

CAP -subgroup of G.

Proof: (1) There is a subgroup K of G such that G = HK and H∩K is a CAP -

subgroup of G. Then G/N = (H/N)(KN/N) and H/N∩KN/N = (H∩K)N/N

is a CAP -subgroup of G/N . So H/N is a CAS-subgroup of G/N .

(2) Let K be a CAS-supplement of H in G. Then H ∩K is a CAP -subgroup

of G. Clearly N ≤ K, hence G/N = (HN/N)(K/N) and HN/N ∩ K/N =

(H ∩ K)N/N is a CAS-subgroup of G/N . This proves that HN/N is a CAS-

subgroup of G/N .

(3) There is a subgroup K of G such that G = HK and H ∩ K is a CAP -

subgroup of G. It follows from L = H(L ∩ K) and H ≤ Φ(L) that L ∩ K = L.

Furthermore, G = K and H = H ∩ K is a CAP -subgroup of G.

Lemma 2.4: Let H be a normal subgroup of a group G such that G/H is p-

nilpotent and let P be a Sylow p-subgroup of H , where p is a prime divisor of

|G|. If |P | ≤ p2 and one of the following conditions holds, then G is p-nilpotent:

(1) (|G|, p − 1) = 1 and |P | ≤ p;

(2) G is A4-free if p = min π(G);

(3) (|G|, p2 − 1) = 1.

Proof: Let G be a minimal counterexample. For any proper subgroup M of

G, we see easily that M satisfies the hypotheses of lemma. It follows that G is

a minimal non-p-nilpotent group (that is, every proper subgroup of a group is

p-nilpotent but itself is not p-nilpotent). By results of Itô (see, [8, IV, 5.4]) and

Schmidt (see, [8, III, 5.2]), G has a normal Sylow p-subgroup Gp and a cyclic

Sylow q-subgroup Gq such that G = [Gp]Gq. Thus Gp ∩ H = P ⊳ G and G/P

is p-nilpotent. Consequently P 6= 1 and PGq ⊳ G. If PGq < G then PGq is

nilpotent and, Gq char PGq ⊳G implies that Gq ⊳G, a contradiction. Therefore
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PGq = G and P = Gp. Clearly, P ≤ CG(P ) < G, so q divides |G/CG(P )|. For

(1), |Aut(P )| = p− 1; for (2) and (3), |P | = p2 and |Aut(P )| = (p2 − 1)(p2 − p).

Since G/CG(P ) is isomorphic to a subgroup of Aut(P ), q must divide p − 1 or

p2 − 1. This is contrary to (1) and (3). If (2) is satisfied, then q|p + 1 and so

p = 2 and q = 3. It is now clear that G/Φ(Gq) is isomorphic to A4, which is

contrary to the hypothesis that G is A4-free.

Theorem 2.5: Let G be a finite group. Then G is solvable if and only if every

Sylow 2-subgroup and every Sylow 3-subgroup are CAS-subgroups of G.

Proof: If G is solvable, then, by [8, main theorem], every Sylow subgroup of

G is complemented. In particular, every Sylow 2-subgroup and every Sylow

3-subgroup are CAS-subgroups of G.

Conversely, assume that every Sylow 2-subgroup and every Sylow 3-subgroup

are CAS-subgroups of G. We proceed to prove that G is solvable. Suppose not,

and let G be a minimal counterexample. Then

(1) G has a unique minimal normal subgroup N such that G/N is solvable.

Let N be a minimal normal subgroup of G. We shall show that G = G/N

satisfies the hypotheses of the theorem. For this purpose, let P = PN/N be a

Sylow 2-subgroup of G, where P is a Sylow 2-subgroup of G. By the hypotheses,

there exists a subgroup K of G such that G = PK and P∩K is a CAP -subgroup

of G. Now let π(G) = {p1, p2, . . . , pn} and let Kpi
be a Sylow pi-subgroup of K,

where p1 = 2 and i = 2, . . . , n. Then Kpi
is also a Sylow pi-subgroup of G, so

N ∩Kpi
is a Sylow pi-subgroup of N . If we denote L = 〈N ∩Kp2

, . . . , N ∩Kpn
〉,

then L ≤ K and N = (P ∩ N)L. It follows that PN ∩ KN = (P ∩ K)N is a

CAP -subgroup of G, i.e., PN is a CAS-subgroup of G. By Lemma 2.3, P is

a CAS-subgroup of G. Similarly, every Sylow 3-subgroup of G is also a CAS-

subgroup of G. Thus G satisfies the hypotheses of the theorem. The choice of

G implies that G is solvable. Since the class of solvable groups is a formation,

N is the unique minimal normal subgroup of G.

(2) Every Sylow 2-subgroup of G is complemented in G.

Let P be a Sylow 2-subgroup of G and let K be a CAS-supplement of P

in G. Then G = PK and P ∩ K is a CAP -subgroup of G. If P ∩ K covers

N/1, then (P ∩ K)N = P ∩ K, N ≤ P ∩ K. In this case, G is solvable since

both N and G/N are, a contradiction. Hence P ∩ K must avoid N/1, namely

P ∩K∩N = 1. It follows that K∩N is a 2′-group. By the Odd Order Theorem,

K ∩N is solvable. Now that K/K ∩N ∼= KN/N ≤ G/N , K/K ∩N is solvable
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and so is K. It is clear that a 2-complement of K is also a 2-complement of G.

This proves (2).

(3) Every Sylow 3-subgroup of G is complemented in G.

Let Q be a Sylow 3-subgroup of G. By hypotheses, there exists a subgroup

H of G such that G = QH and Q∩H is a CAP -subgroup of G. Clearly, Q∩H

cannot cover N/1, so Q∩H ∩N = 1, namely H ∩N is a 3′-group. If we take P

to be a Sylow 2-subgroup of H , then P is also a Sylow 2-subgroup of G. By (2),

P has a complement in G, say K. We have H = P (H ∩K). Again, H ∩N ⊳H ,

so P ∩ N is a Sylow 2-subgroup complementing H ∩ K ∩ N . This shows that

every Sylow 2-subgroup of the 3′-group H ∩ N is complemented in H ∩ N . By

Arad–Ward’s theorem [1], H ∩ N is solvable. Now H/H ∩ N ∼= HN/N ≤ G/N

is solvable, hence H is also solvable. Now, the 3-complements of H are also

3-complements of G, thus Q is complemented in G.

Finally, we deduce that G is solvable by Arad–Ward’s theorem [1], a contra-

diction.

Corollary 2.6: A finite group G is solvable if and only if every Sylow sub-

group of G is a CAS-subgroup of G.

3. CAS-subgroups and the p-nilpotency

In this section, Np and GNp will denote the class of p-nilpotent groups and the

p-nilpotent residual of G, respectively.

Theorem 3.1: Let H be a normal subgroup of a group G such that G/H is

p-nilpotent and let P be a Sylow p-subgroup of H , where p is a prime divisor

of |G| with (|G|, p − 1) = 1. If all maximal subgroups of P are CAS-subgroups

of G, then G is p-nilpotent.

Proof: Let G be a minimal counterexample. Then

(1) G has a unique minimal normal subgroup N contained in H , G/N is

p-nilpotent and N 6≤ Φ(G).

Let N be a minimal normal subgroup of G contained in H . Consider the

factor group G = G/N . Clearly G/H ∼= G/H is p-nilpotent and P = PN/N

is a Sylow p-subgroup of H, where H = H/N . Now let P 1 = P1N/N be a

maximal subgroup of P . We may assume that P1 is a maximal subgroup of

P . Then P1 ∩ N = P ∩ N is a Sylow p-subgroup of N . By hypotheses, there

exists a subgroup K1 of G such that G = P1K1 and P1∩K1 is a CAP -subgroup

of G. We have G/N = (P1N/N)(K1N/N) and P1N ∩ K1N = (P1N ∩ K1)N .
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Let π(G) = {p1, p2, . . . , pn} and let K1pi
be a Sylow pi-subgroup of K1, where

p1 = p and i = 2, . . . , n. Then K1pi
is also a Sylow pi-subgroup of G, hence

N ∩ K1pi
is a Sylow pi-subgroup of N . Write L = 〈N ∩ K1p2

, . . . , N ∩ K1pn
〉.

Then L ≤ K1. Note that (|N : P1 ∩ N |, |N : L|) = 1, N = (P1 ∩ N)L and

P1N/N ∩ K1N/N = (P1 ∩ K1)N/N is a CAP -subgroup of G/N . Thus P 1 is a

CAS-subgroup of G. The choice of G implies that G is p-nilpotent. Since the

class of p-nilpotent groups is a saturated formation [6, VI, 7.6], N is the unique

minimal normal subgroup of G contained in H and N 6≤ Φ(G).

(2) Op(H) = 1.

If not, then by (1), N ≤ Op(H) and, there is a maximal subgroup M of G

such that G = NM and N ∩ M = 1. It follows that M ∼= G/N is p-nilpotent.

Let Mp′ be the normal p-complement of M , then M ≤ NG(Mp′) ≤ G. The

maximality of M implies that either M = NG(Mp′) or NG(Mp′) = G. If the

latter holds, then Mp′ ⊳G, Mp′ is actually the normal p-complement of G, which

is contrary to the choice of G. Hence we must have NG(Mp′) = M . On the

other hand, since P ∩ M < P , we may let P1 be a maximal subgroup of P

containing P ∩M . Because P1 is a CAS-subgroup of G, there exists a subgroup

K1 of G such that G = P1K1 and P1 ∩K1 is a CAP -subgroup of G. If P1 ∩K1

covers N/1, then (P1 ∩ K1)N = P1 ∩ K1, that is, N ≤ P1 ∩ K1. Furthermore,

P = N(P ∩ M) ≤ P1, a contradiction. Thereby P1 ∩ K1 must avoid N/1, i.e.,

P1 ∩ K1 ∩ N = 1. Consequently, |K1 ∩ N | ≤ p. Since K1/N ∩ K1
∼= K1N/N ≤

G/N , K1/N ∩K1 is p-nilpotent. It follows that K1 is p-nilpotent by Lemma 2.4.

Now let K1p′ be the normal p-complement of K1. Then K1p′ ⊳ K1. Clearly,

both K1p′ and Mp′ are Hall p′-subgroups of G of odd order. By applying a deep

result of Gross ([6, main Theorem]), there exists g ∈ G such that Kg
1p′ = Mp′ .

Hence Kg
1
≤ NG(Kg

1p′) = NG(Mp′) = M . However, K1p′ is normalized by K1,

so g can be considered as an element of P1. Thus G = P1K
g
1

= P1M and

P = P1(P ∩ M) = P1, a contradiction.

(3) End of the proof.

Let P1 be a maximal subgroup of P . Then there exists a subgroup K1

such that G = P1K1 and P1 ∩ K1 is a CAP -subgroup of G. It follows that

H = P1(H ∩ K1) and P ∩ K1 is a Sylow p-subgroup of H ∩ K1. Again,

K1 ∩ N ⊳ H ∩ K1, hence P ∩ K1 ∩ N is a Sylow p-subgroup of K1 ∩ N . By

(2), we see that N 6≤ P1 ∩ K1, so P1 ∩ K1 ∩ N = 1 and |P ∩ K1 ∩ N | ≤ p.

However, K1/K1 ∩N ∼= K1N/N ≤ G/N , so K1/K1 ∩N is p-nilpotent and, K1

is p-nilpotent by Lemma 2.4. Let K1p′ be the normal p-complement of K1 and

let R = NG(K1p′). Then K1 ≤ R and P = P1(P ∩ R). If R = G, K1p′ ⊳ G,
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K1p′ is actually the normal p-complement of G, a contradiction. Thus R < G

and P ∩R < P . Now take P2 to be a maximal subgroup of P containing P ∩R

and K2 to be a CAS-supplement of P2 in G. Then P2 ∩K2 is a CAP -subgroup

of G. Similarly, K2 is also p-nilpotent. If K2p′ is the normal p-complement of

K2, then K2 ≤ NG(K2p′). Since both K2p′ and K1p′ are Hall p′-subgroups of G

of odd order, by Gross’ Theorem, there is g ∈ G such that Kg
2p′ = K1p′ . Since

K2p′ is normalized by K2, g can be considered as an element of P2. Therefore

Kg
2
≤ NG(Kg

2p′) = NG(K1p′) = R. Now we obtain that G = P2K
g
2

= P2R and

P = P2(P ∩ R) = P2, a contradiction. We are done.

Corollary 3.2: Let P be a Sylow p-subgroup of a group G, where p is a

prime divisor of |G| with (|G|, p − 1) = 1. If G is not p-nilpotent, then there is

a maximal subgroup of P ∩ GNp which is not a CAS-subgroup of G.

Theorem 3.3: Let H be a normal subgroup of a group G such that G/H is

p-nilpotent and let P a Sylow p-subgroup of H , where p is the smallest prime

divisor of |G|. If G is A4-free and every second maximal subgroups of P is a

CAS-subgroup of G, then G is p-nilpotent.

Proof: Let G be a minimal counterexample. Then

(1) G has a unique minimal normal subgroup N contained in H , G/N is

p-nilpotent and N 6≤ Φ(G).

(2) Op(H) = 1.

If not, then N ≤ Op(H) by (1). Moreover, there exists a maximal subgroup

M of G such that G = NM and N∩M = 1. Therefore M ∼= G/N is p-nilpotent.

Let Mp′ be the normal p-complement of M . Then M ≤ NG(Mp′) ≤ G. The

maximality of M in G implies that either M = NG(Mp′) or NG(Mp′) = G. If

the latter holds, then Mp′ ⊳ G, Mp′ is actually the normal p-complement of G,

which is contrary to the choice of G. Hence we must have NG(Mp′) = M . In this

case, if N = P , then |N | > p2 by Lemma 2.4. Take a second maximal subgroup

P1 of N . Since P1 is a CAS-subgroup of G, there exists a subgroup K1 such

that G = P1K1 and P1 ∩ K1 is a CAP -subgroup of G. Clearly P1 ∩ K1 must

avoid N/1, therefore P1∩K1 = 1. It follows from K1/N∩K1
∼= K1N/N ≤ G/N

that K1/N ∩ K1 is p-nilpotent. However, |N ∩ K1| ≤ p2, so K1 is p-nilpotent

by Lemma 2.4. Now let K1p′ be the normal p-complement of K1. We see that

K1p′ ⊳K1. Clearly, both K1p′ and Mp′ are Hall p′-subgroups of G of odd order.

By Gross’ result, there is x ∈ G such that Kx
1p′ = Mp′ . Hence Kx

1 ≤ NG(Kx
1p′) =

NG(Mp′) = M . Now that K1p′ is normalized by K1, x can be considered as
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an element of P1. Thus G = P1K
x
1

= P1M and P = P1(N ∩ M) = P1, a

contradiction.

Now we assume that N < P . Clearly P ∩ M < P , so we may let P2 be a

maximal subgroup of P such that P ∩ M ≤ P2. Then P2 = (P2 ∩ N)(P ∩ M).

Furthermore,

|N : P2 ∩ N | = |N(P ∩ M) : (P2 ∩ N)(P ∩ M)| = |P : P2| = p,

that is, P2 ∩ N is a maximal subgroup of N . Note that P ∩ M 6= 1, let P3 be

a maximal subgroup of P ∩ M . Since P2 ∩ N ⊳ P and |P : (P2 ∩ N)P3| = p2,

P0 = (P2 ∩ N)P3 is a second maximal subgroup of P . Thus, by hypotheses,

there is a subgroup K0 such that G = P0K0 and P0 ∩ K0 is a CAP -subgroup

of G. If P0 ∩ K0 covers N/1, then N ≤ P0 and N ≤ P0 ∩ N = P2 ∩ N ,

contrary to the maximality of P2∩N in N . So P0∩K0 must avoid N/1, namely

P0∩K0∩N = 1. Furthermore, |K0∩N | ≤ p2. Again, K0/K0∩N ∼= K0N/N ≤

G/N is p-nilpotent, hence K0 is p-nilpotent by Lemma 2.4. Let K0p′ be the

normal p-complement of K0. Clearly both K0p′ and Mp′ are Hall p′-subgroups

of G, again by Gross’ result, there is y ∈ G such that Ky
0p′ = Mp′ . Hence

Ky
0
≤ NG(Ky

0p′) = NG(Mp′) = M . Similarly, y can be regarded as an element

of P0. Thus G = P0K
y
0

= P0M = (P2 ∩N)M and N = P2 ∩N , a contradiction.

This proves (2).

(3) A final contradiction.

By Lemma 2.4, we may assume that |N |p > p2. Let P1 be a second maximal

subgroup of P . Then there exists a subgroup K1 such that G = P1K1 and

P1 ∩ K1 is a CAP -subgroup of G. We have H = P1(H ∩ K1). It is easy to see

that P ∩ K1 ∩ N is a Sylow p-subgroup of K1 ∩ N . By (2), N 6≤ P1 ∩ K1, so

P1 ∩ K1 ∩ N = 1 and |K1 ∩ N |p ≤ p2. From K1/K1 ∩ N ∼= K1N/N ≤ G/N we

see that K1/K1 ∩ N is p-nilpotent. Therefore K1 is p-nilpotent by Lemma 2.4.

Let K1p′ be the normal p-complement of K1 and let R = NG(K1p′). We may

assume that R < G. Take P2 to be a maximal subgroup of P containing P ∩R.

Then P2 ∩ R = P ∩ R and P2 = (P1 ∩ P2)(P ∩ R). Hence

|P1 : P1 ∩ P2| = |P1(P ∩ R) : (P1 ∩ P2)(P ∩ R)| = |P : P2| = p,

that is, P1∩P2 is a maximal subgroup of P1. Again, P1∩R < P ∩R, so we may

choose P3 to be a maximal subgroup of P ∩R containing P1 ∩R. Furthermore,

we get P1 ∩ P3 = P1 ∩ R. Since P1 ∩ P2 ⊳ P , (P1 ∩ P2)P3 is a group and,

|P : (P1 ∩ P2)P3| = |P1(P ∩ R) : (P1 ∩ P2)P3| = p2.
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Thus P0 = (P1 ∩ P2)P3 is a second maximal subgroup of P . Let K0 be a

CAS-supplement of P0 in G. With similar arguments, we see that K0 is also p-

nilpotent. Assume that K0p′ is the normal p-complement of K0. Now both K0p′

and K1p′ are Hall p′-subgroups of G of odd order, so there exists x ∈ G such

that Kx
0p′ = K1p′ . We obtain Kx

0
≤ NG(Kx

0p′) = NG(K1p′) = R. Of course, x

can be considered as an element of P0. Thus G = P0K
x
0

= P0R = (P1 ∩ P2)R

and P1 = (P1 ∩P2)(P1 ∩R). Now from P1 ∩R ≤ P1 ∩P2 we have P1 = P1 ∩P2,

which is contrary to the maximality of P1 ∩ P2 in P1.

Corollary 3.4: Let G be a group which is A4-free and let P be a Sylow

p-subgroup of G, where p is the smallest prime divisor of |G|. If G is not

p-nilpotent, then there is a maximal subgroup of P ∩GNp which is not a CAS-

subgroup of G.

Similarly, we have the following:

Theorem 3.5: Let H be a subgroup of a group G such that G/H is p-nilpotent

and let P be a Sylow p-subgroup of H , where p is a prime number dividing |G|

with (|G|, p2−1) = 1. If every second maximal subgroup of P is a CAS-subgroup

of G, then G is p-nilpotent.

4. CAS-subgroups and the supersolvability

For convenience, we denote by U and GU the class of supersolvable groups and

the supersolvable residual of G, respectively.

Lemma 4.1 ([13, Lemma 2.8]): Let M be a maximal subgroup of G, P a normal

p-subgroup of G such that G = PM , where p a prime. Then

(1) P ∩ M is a normal subgroup of G;

(2) if p > 2 and all minimal subgroups of P are normal in G, then M has

index p in G.

Lemma 4.2 ([13, Theorem 3.1]): Let F be a saturated formation containing

U , G a group with a solvable normal subgroup H such that G/H ∈ F . If for

any maximal subgroup M of G, either F (H) ≤ M or F (H) ∩ M is a maximal

subgroup of F (H), then G ∈ F .

Theorem 4.3: Suppose that H is a normal subgroup of a group G such that

G/H is supersolvable. If all maximal subgroups of any Sylow subgroup of H

are CAS-subgroups of G, then G is supersolvable.
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Proof: Let G be a minimal counterexample. Then

(1) G has a unique minimal normal subgroup N contained in H , G/N is

supersolvable and N 6≤ Φ(G).

(2) N is an elementary abelian p-group but is not a Sylow p-subgroup of H ,

where p ∈ π(H).

Let r be the smallest prime divisor of |G|. By the hypothesis and Theorem

3.1, G is r-nilpotent. In particular, G is solvable by the Odd Order Theorem.

Hence N is an elementary abelian p-group for some p ∈ π(H). Assume that N

is a Sylow subgroup of H . Take a maximal subgroup P1 of N . By hypothesis,

there is a subgroup K1 of G such that G = P1K1 and P1 ∩ K1 is a CAP -

subgroup of G. Clearly, P1 ∩ K1 cannot cover N/1, so (P1 ∩ K1) ∩ N = 1, that

is, P1 ∩ K1 = 1. On the other hand, N ∩ K1 ⊳ G, so N ∩ K1 = 1 or N by

the minimal normality of N . If N ∩ K1 = 1 then N = P1, in a contradiction.

Hence N ∩ K1 = N and |N | = p. By Lemma 4.2, G is supersolvable, also a

contradiction. (2) follows.

(3) p 6= q, where q is the largest prime divisor of |G|.

Assume that p = q. By (1) and (2), there exists a maximal subgroup M of

G such that G = NM and N ∩ M = 1. Let Mp be a Sylow p-subgroup of M .

Then NMp is a Sylow p-subgroup of G and so it is normal in G because G/N

is supersolvable. Write Hp = NMp ∩ H . Then Hp is a normal subgroup of G.

In this case, by Lemma 4.1, Hp ∩ M is normal in G. If further Hp ∩ M 6= 1,

then N ≤ Hp ∩M by (1), which is contrary to N ∩M = 1. Hence we must have

Hp ∩ M = 1 and consequently, N = Hp is a Sylow p-subgroup of H , contrary

to (2).

(4) There is a maximal subgroup M of G such that NG(Q) = M , where

Q ∈Sylq(M).

From (3) we see that there exists a maximal subgroup M of G such that

G = NM and N ∩ M = 1. It follows that M ∼= G/N is supersolvable. Let Q

be a Sylow q-subgroup of M . Then Q is normal in M and M ≤ NG(Q) ≤ G.

The maximality of M implies that either M = NG(Q) or NG(Q) = G. If

NG(Q) = G, then Q ⊳ G and, by (1) and (3), we obtain Q ∩ H = 1. However,

Q is also a Sylow q-subgroup of G, so H is a q′-group. Now consider the factor

group G = G/Q. Clearly, G/H ∼= G/HQ is supersolvable, where H = HQ/Q.

Let R1 = R1Q/Q be a maximal subgroup of some Sylow r-subgroup of H , where

r ∈ π(H) and r 6= q. We may assume that R1 is a maximal subgroup of some

Sylow r-subgroup R of H . By the hypothesis, R1 is a CAS-subgroup of G, so

R1Q/Q is a CAS-subgroup of G/Q by Lemma 2.3. This means that G satisfies
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the hypothesis of theorem. By the choice of G, G/Q is supersolvable. Again

by (1), we have that G ∼= G/(N ∩ Q) is supersolvable, a contradiction. Thus

NG(Q) = M and (4) follows.

(5) End of the proof.

Let P be a Sylow p-subgroup of H . Now that P ∩ M < P , there exists a

maximal subgroup P1 of P such that P ∩ M ≤ P1. Now that P1 is a CAS-

subgroup of G, there is a subgroup K1 of G such that G = P1K1 and P1 ∩ K1

is a CAP -subgroup of G. If P1 ∩ K1 covers N/1, then (P1 ∩ K1)N = P1 ∩ K1,

that is, N ≤ P1 ∩ K1, thus P = N(P ∩ M) ≤ P1, a contradiction. Thereby

P1 ∩K1 must avoid N/1, namely P1 ∩K1 ∩N = 1. Furthermore, |K1 ∩N | ≤ p.

Again, K1/K1 ∩ N ∼= K1N/N ≤ G/N , so K1/K1 ∩ N is supersolvable. In

this case, K1 is supersolvable by Lemma 4.2. Let K1q be a Sylow q-subgroup

of K1. Then K1q is a normal subgroup of K1 and a Sylow q-subgroup of G.

On the other hand, Q is also a Sylow q-subgroup of G, so by Sylow theorem,

there is g ∈ G such that Kg
1q = Q. Hence Kg

1
≤ NG(Kg

1q) = NG(Q) ≤ M .

Moreover, g can be considered as an element of P1, hence G = P1K
g
1

= P1M

and P = P1(P ∩ M) = P1, a contradiction.

Since every subgroup of a supersolvable group must be a CAP -subgroup, we

have the following:

Corollary 4.4: A group G is supersolvable if and only if every maximal sub-

group of any Sylow subgroup of G is a CAS-subgroup of G.

Remark 4.5: There exists a supersolvable group such that some maximal sub-

group of Sylow subgroup is not c-supplemented in G. Example 2 in Remark 2.2

is a counterexample.

Corollary 4.6: If G is not supersolvable, then there is a maximal subgroup

of Sylow subgroup of GU which is not a CAS-subgroup of G.

([12, Theorem 3.3]) follows directly from Corollary 4.6.

Theorem 4.7: Let F be a saturated formation containing U and let H be a

solvable normal subgroup of G such that G/H ∈ F . If all maximal subgroups

of any Sylow subgroup of F (H) are CAS-subgroups of G, then G ∈ F .

Proof: Let G be a minimal counterexample. First we have Φ(H) = 1. In

fact, if Φ(H) 6= 1, we consider G = G/Φ(H). Obviously, F (H) = F (H)/Φ(H).

Now it is not hard to show that G satisfies the hypothesis of theorem. By the

minimality of G we obtain G/Φ(H) ∈ F . However, Φ(H) ≤ Φ(G), hence G ∈ F



Vol. 159, 2007 ON CAS-SUBGROUPS OF FINITE GROUPS 187

since F is saturated, a contradiction. Let M be a maximal subgroup of G such

that F (H) 6≤ M . Then there exists a prime p such that Op(H) 6≤ M . It follows

that G = Op(H)M . Clearly, Op(H) ∩ M < Op(H), so we may take a maximal

subgroup P1 of Op(H) containing Op(H)∩M . Then P1∩M = Op(H)∩M ⊳G,

therefore P1 ∩ M ≤ (P1)G. Again, (P1)GM < G, so (P1)G ≤ Op(H) ∩ M

and P1 ∩ M = Op(H) ∩ M = (P1)G. Let Op(H)/K be a chief factor of G

with Op(H) ∩ M ≤ K. Then Op(H) ∩ M = K ∩ M . Now, KM < G, so

K ≤ Op(H) ∩ M and K = Op(H) ∩ M = (P1)G. Since P1 ∩ K1 is a CAS-

subgroup of G, there exists a subgroup K1 such that G = P1K1 and P1 ∩ K1

is a CAP -subgroup of G. Clearly (P1)G(Op(H) ∩ K1) is normal in G. From

the fact that Op(H)/(P1)G is a G-chief factor we know that either (P1)G =

(P1)G(Op(H) ∩ K1) or (P1)G(Op(H) ∩ K1) = Op(H). If the former holds, then

Op(H) ∩ K1 ≤ (P1)G. Furthermore, Op(H) ∩ K1 = P1 ∩ K1 and Op(H) =

P1 as P1K1 = Op(H)K1 = G, a contradiction. So (P1)G(Op(H) ∩ K1) =

Op(H), we obtain Op(H) ≤ (P1)GK1. Thus G = (P1)GK1 = P1K1. But

(P1)G ∩ K1 = P1 ∩ K1, we have P1 = (P1)G = Op(H) ∩ M . Therefore

|G : M | = |Op(H) : Op(H) ∩ M | = p. By Lemma 4.2, we get G ∈ F , a

final contradiction.

([13, Theorem 4.2]) and ([2, Theorem 4.3]) follow directly from Theorem 4.7.
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